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The structure of the completely integrable system of the Einstein-Petrov 
type I equations (recently derived by Brans) is investigated. By introducing 
a modification to the Newman-Penrose tetrad formalism, not only is the 
complete system obtained very easily and presented very concisely, but it 
is possible to obtain a set of identities which give explicitly the considerable 
redundancy within the complete system. This redundancy is exploited to 
identify a very compact subsystem of the complete system which arises 
very naturally in the new formalism, and which is of a different (in some 
senses, simpler) structure than the usual presentations for these spaces. 
The usefulness of this new subsystem in the search for exact solutions is 
demonstrated. 

1, I N T R O D U C T I O N  

In  a recent paper, Brans (1977) has investigated the integrability condi- 
tions o f  the Einstein-Petrov type I equations in a vacuum. He has shown that  
a nontrivial set o f  integrability conditions (the post-Bianchi equations) exist, 
and further that the integrability conditions o f  the post-Bianchi equations 
are identically satisfied modulo  the other equations, i.e., the two sets o f  
structure equations, plus the Bianchi equations, plus the post-Bianchi equa- 
tions are a completely integrable system. The first part  o f  Brans '  work was 
carried out in differential form notation,  but in the latter par t  he had to write 
out  the results explicitly in the N.P. formalism. (Newman and Penrose, 1962). 
Al though his calculations were extremely long and had to be carried out  by 
computer ,  Brans emphasizes that  the simple nature o f  the final result suggests 
that  it should have been anticipated without  the need for  such explicit 
computat ions.  
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In the first part of this paper the structure of the completely integrable 
system determined by Brans is examined in detail. A modification to the N.P. 
formalism is introduced which, by simplifying the presentation of the Bianchi 
equations and highlighting certain aspects of their structure, enables the post- 
Bianchi equations to be easily found and the completely integrable system 
of equations to be identified and compactly presented. In addition the con- 
siderable redundancy within the complete system is easily determined and is 
also presented very concisely as a set of identities. 

In the latter part of this paper this redundancy is exploited to obtain a 
subsystem of the complete system, which although a much smaller system 
and much more compact, is still sufficient to ensure that the complete system 
is satisfied. This subsystem has such a simple and natural presentation that it 
would suggest that there is still some underlying structure which remains to 
be fully appreciated and exploited. Further, the conciseness and simplicity 
of this new sufficient subsystem provides a very promising starting point in 
the search for new exact solutions; in particular, it is found that, for a subset 
of the Petrov type I spaces, the subsystem reduces very easily to three standard 
nonlinear differential equations. 

Papapetrou (1971a, b) has obtained a number of fundamental results on 
the structure of tetrad formalisms, with particular emphasis on the N.P. 
formalism, and although his results were derived for only the most general 
case (completely arbitrary Riemann tensor), his methods are very relevant 
to this paper. His results are summarized in Section 2 along with their appli- 
cations to the N.P. formalism. In Section 3 the new notation is introduced 
and the results on integrability discovered by Brans follow very easily. When 
the techniques of Papapetrou are applied to the complete system of equations 
for this special class of spaces, five sets of identities are found linking the 
equations of the system, and they are presented compactly in the new nota- 
tion. These identities are given in Section 4. 

In Section 5 it is shown (for the general Petrov type I spaces) that the 
redundancy found in Section 4 enables the first set of structure equations to 
be omitted from the complete system. Further it is seen that most of the 
equations in the second set of structure equations can also be omitted, and a 
very compact sufficient subsystem of equations is presented exclusively and 
naturally in the new notation. In Section 6 it is shown, for a subset of Petrov 
type I spaces, that the new presentation enables the crucial differential equa- 
tions for the metric tensor to be obtained very efficiently, and a coordinate 
system is suggested naturally. 

The results are summarized in Section 7 and their implications discussed. 
Appendix A contains an explicit statement of all the post-Bianchi equations 
in N.P. formalism, and the proof of a result used in Section 6, is given in 
Appendix B. 
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2. I N T E G R A B I L I T Y  C O N D I T I O N S  AND I D E N T I T I E S  F O R  
T H E  C O M P L E T E L Y  A R B I T R A R Y  S P A C E S  

The basic system of  equations usually considered in the tetrad formalism 

~ , , ~  = Zm~;~Z~~ ~ (2.1) 
Rmnpq = 27'mnEp;ql + 27sntpTSrmlq] + 27',~,~W~Epq~ (2.2) 

Rmntpq;r] = ymSErRpq]sn -- ~'nstrRvq]srn + 2Rmns[vyrSql (2.3) 

Papapet rou  (1971 a) has emphasized the following impor tant  proper ty :  The 
three sets o f  equations (2.1), (2.2), and (2.3)form a completely integrable system 
o f  equations. [This is in the sense that  when (2.1) is considered as a set o f  
differential equations for Zm% the integrability conditions are given by (2.2); 
when the set (2.2) is considered as a set o f  differential equations for vm,p, the 
integrability conditions are given by (2,3); when (2.3) is considered as a set o f  
differential equations for  Rrnnpq the integrability conditions are satisfied 
identically in this case.] 

Within this complete system there exists a lot o f  redundancy and it is 
easily identified in the notat ion introduced by Papapetrou (1971b). Using 
Papape t rou ' s  notation,  the complete system of  equations can be presented as 
follows: 

where 

X~=p = 0 (2.1') 

Ymnpq = 0 (2.2') 

Vsm[npq I = 0 (2.3') 

Xmnp =~ 2y[mlnlp]- 2Z[ma;plZna (2.4) 

Ymnpq =~ Rmnpq - 2ym,tp:q~ -- 2ysmtqySlnlP] -- 2)'m~sY~Epql (2.5) 

Vsrnnpq ~- Rsrnnp; q - 2R~t~ytpq + Rpqtm~etsn - Rpqts~tmn (2.6) 

The Xm,,,  Ym,pq, V~,vq are merely labels for the different equations. 
The redundancy is then given explicitly by the following three sets o f  

identities: 

J~[mSn;p] - -  ~rS[mXnrp] + X[mrn{~lrlSp] - ~-'p]Sr} + 2Xrstmy~rpl + Ytmsn;j = 0 (2.7) 

The orthonormal tetrad vectors are denoted by Zm% the Ricci spin coefficients by 7,~,v, 
and the tetrad components of the Riemann tensor by R,~nvq. In general, the Latin 
letters in the latter half of the alphabet, m, n, p . . . .  , will be used for tetrad components 
of an object, while the letters at the beginning of the alphabet, a, b, c . . . . .  will be used 
for coordinate components. All indices run 1, 2, 3, 4. The covariant derivative and the 
intrinsic derivative wil) be denoted by a semicolon, while the ordinary partial derivative 
will be denoted by a comma. Antisymmetrization will be denoted by square brackets, 
symmetrization by round brackets, and the alternating tensor by n~bca 
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V~pq~l - Ym~Epq ;~ + Ym~[p ;1~1Xq~ + 2Y~Epq Yl,~lra 

- -  ySm[p Ylsnlqr] + "/snip Ylsmlqr] + Ymn s Ys[pqr] = 0 (2.8) 

- R,,~tr Y~,~ + RqnE,~ y t p ~  + �89 = 0 (2.9) 

A fourth set of equations often used in work in the tetrad formalism is 
the set of equations 

{VmV~ + yEm~<Vp}v = 0 (2.10) 

where V can be either completely arbitrary or represent two complex inde- 
pendent quantities. It is important to note that the commutator identities 

{Vr~Vbl}:q = 0 (2.11) 

become in tetrad notation, 

{VtmVn I + Ztm;n]Va}~) = 0 (2.12) 

which becomes by virtue of (2.4), 

{Vr~V~ + yEm~lV~}~ = �89 (2.13) 

Another important result, also implicit in Papapetrou's work (1971a), is now 
obvious: The equations (2.1) and (2.10) are equivalent. 

The N.P. formalism is simply the normalized tetrad formalism with 
specific choices made for the tetrad vectors (Newman and Penrose, 1962). 
Two of the tetrad vectors Z~ ~, Z2 ~ are chosen to be real, null, future-pointing 
vectors, normalized as 

ZI~Z2= = 1 (2.14a) 

and the other two vectors Za ~, Z4 ~ are chosen as complex null vectors and 
normalized as 

Za~Z~ = - 1 (2.14b) 

The 24 real rotation coefficients can be combined to give 12 complex spin 
coefficients and the Riemann tensor written as 12 independent complex 
components. A different symbol is given to each spin coefficient, differential 
operator, and independent Riemann tensor component. The four sets of 
equations (2.1), (2.2), (2.3), and (2.10) can easily be written out individually 
in this notation and it is obvious that all those results obtained above carry 
directly over into the N.P. formalism. It is also possible to apply these results 
to the G.H.P. formalism (originally suggested by Geroch, Held, and Penrose, 
1973) where some useful modifications can be made (Edgar, 1978). 

It is emphasized again that these results of Papapetrou were determined 
for the most general cases (i.e., tetrad and Riemann tensor completely 
arbitrary). In fact, Papapetrou (1970) originally considered only the vacuum 
case (Ricci tensor zero, but all other conditions arbitrary) and his results for 
the vacuum case are exactly what would be deduced by substituting a zero 
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Ricci tensor in the results above. So it is known that no extra integrability 
conditions or identities arise out of imposing the vacuum case constraint, and 
the above results can be carried over into this special case. However, when any 
other specializations are made it would be expected that the above results 
may need to be modified--as of course is clearly the situation for Petrov type I 
vacuum spaces. 

3. INTEGRABILITY CONDITIONS FOR PETROV 
TYPE I SPACES 

Brans (1977) commenced his work in differential form notation and then 
changed to the N.P. formalism. It will be convenient here to use the general 
tetrad formalism for conciseness but specialize to the N.P. formalism when 
explicit statements of individual equations are required. 

Within the N.P. formalism there is still the tetrad freedom of (i) null 
rotations about Z1 ~, Z2% and (ii) boost in Z I ~ - Z 2  a plane, spatial rotation in 
z 3 a - z 4  ~ plane. It is possible, for Petrov type I spaces, to use up this freedom 
in such a way that 

~F1 = 0 = ~Fa (3.1 a) 

Wo = ~F4 (3. lb) 

so that the Weyl tensor is in canonical form. 
Important symmetry properties are emphasized at this stage. It is well 

known that the tetrad equations for the general case are symmetric under the 
transformation (denoted by ') 

1+-->2 

3+-*4 

and also under the transformation (denoted by *) 

1 - + 3  3 - + - 1  

2 - + - 4  4--->2 

(Both these symmetries are quoted by Geroch, Held, and Penrose, 1973, and 
in fact the ' symmetry is built into the G.H.P. formalism.) It is interesting to 
note that the specialization (3.1) does not break these symmetries. In practice, 
this means that calculations can be considerably shortened. Unfortunately, 
the much more concise G.H.P. formalism cannot itself be used in the work, 
because by (3.1) a specific choice of gauge has been made. 

The two sets of structure equations for vacuum Petrov type I spaces 

Xmn p -~ 2y[mlnl~ ] - -  2Z[ma:p]Z~a 

= 0 (3.2) 

Ymnpq ~ Rra~pq - -  2ymn[p;q] - -  2ysmEqysjnlp] - -  2ymnSys[pq] 

= 0 (3.3) 
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when written in the N.P. formalism become, respectively, 

-- Y1341 ~ 

- -  Y 1 8 3 1  

- -  Y ~ 4 1 4  ~ 

- Y 2 4 1 3  ~ 

- Y 1 3 2 1  ~ 

- Y 2 4 1 2  ~ 

- Y 2 4 2 4  ~ 

- Y 1 3 4 3  ~ 

- Y 2 4 8 4  ~ 

- Y 2 4 8 2  ~ -  

- Y 1 3 2 8  - -  

- -  Y1342 ~- 

p =  
O" = 

�9 ./- = 

y 

Dp - g~ - 

0 

D a -  3 ~ -  

0 

D 2 , -  g = -  

0 

D t z -  3 z r -  

0 

Z~,~:~Za'~Z~ ~ ~' = Z , ~ : ~ Z d Z d  
Z ~  ;~Z~Z~ ~, I z = Z4~ :~Zd~Z~ ~ 

Z ~  :~Zd~Z, ~ A = Z ,~  :~Z~Z~ ~ 

Z ~  :~Z~Z~ ~ ~ = Z,~ :~ZdZ~ ~ 
= �89  :~z~~ ~ - z~o :~ZCZd}  

i a b = - ~ { Z ~ ; ~ Z :  Z~  - Z a ~ ; ~ Z ~ Z ~  ~} 
1 a b = ~{Z~;bZ2 Z~ - Z ~ ; ~ Z ~ Z ~  ~} 

= !rZzt ~ . : ~ Z ~ Z z  ~ - Z ~  :~Z~Z= ~} 

(p~ + ~ )  - ( ,  + ~)p + z ~  + ~ ( 3 ~  + ~ -  ~ )  

(3.23 

( p + f f ) a - ~ ( 3 e - Z ) e + ( r - ~ + f f +  3 / 3 ) - t Y  o 

(p a  + ,~ , )  - ~-~ - (~, - g)~,  + ,,~ + ( 3 ,  - ~ )~  

(Z~ + ~ , )  - ~ + ( ,  + ~ ) ,  + ~(~ - ~) + ,~  - ' G  

D r  - A~ -- (~- + ~)p -- (r + zr)~ -- (E -- g)~- + (37 + ~7)K 
0 

Dv - Art - (rr + ~)I~ - (~  + z)2t - (Y - ~)Tr + (3~ + ~)v 
0 

AA - 8,, + (~ + t~);~ + (37 + r - (3,~ + ~ + ~- - ~),, + % 

0 

0 

~;~ - g ~  - (p - ~)~  - ( ~  - g ) ~  - ~(~, + ~ )  - a ( ~ -  3~)  

o 

0 

3 r -  A ~ -  ( ~  + X p ) -  (r  + f i -  ~) ,  + ( 3 7 - ~ 7 ) ~ +  ~ 
0 

= 0  

- �89 - Ya,~} = Da - ge - (P + g -  2e)a - /3~ + fie + Ka 
+ ~-V - (~ + p)~ 

= 0  

- ~{  Y ~  - r ~ , ~ l }  = D ~  - 8 ,  - (~  + ~ ) ~  - ( ~  - ~ )~  + ( ,  + v ) ~  
+ (~ - ~)~ 

= 0  
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- � 8 9  - Ya421} - Dy  - At - (r + Y)c~ - (~ + rr)fl + (E + ~-)Y 

+ (;,  + ~7)~ - ~,~ + ~ - ~F2 
= 0  

- �89 Y~24a - Ya4~a} ==- 8~ - gt3 - (/.p - ae) - ~ - /3/3  + 2~fl 
- v ( P  - # )  - , ( t *  - # )  + % 

---0 
y - ={ ~==~ - Y ~ }  --- a r  - A 5  _ ( ,  _ ~ _ 5 ) 7  + ( r  - ~ - i f ) 5  

-- /*r + cry + e ~ -  c~X 
= 0  

- � 8 9  11 ~ - - 

- ( 5 -  # ) ~  - ( f i -  ~ ) r  

= 0 (3.3') 

It  should be noted that the specialization (3.1) cannot  be incorporated 
directly into the set o f  equations (3.3) but only into each individual equation 
when written out explicitly as in (3.3'). But since the simplification (3. I) does 
not  affect the actual structure of  the set (3.3) it will often be convenient to use 
(3.3), remembering that  the substitution (3.1) is understood,  rather than deal 
with the more lengthy (3.3'). 

However,  when the substitution (3.1) is made into the Bianchi identities 
(2.2) the basic structure is considerably changed as is clear in the N.P. 
formalism: 

8Wo = 3K~F2 + (4c~ -- ~')~o (3.4a) 

8Wo = --3v~2 -- (4/3 -- -r)'f o (3.4b) 

AtFo = 3~tI"2 + (47, - /X)Wo (3.4c) 

DTo = -3A~F2 - (& - p)~Fo (3.4d) 

D ~ F 2  = 3p~F2 - A~Fo (3.5a) 

AT~ = -3 t~T2 + ~ o  (3.5b) 

3~F2 = 3r~F2 - v/Fo (3.5c) 

8~F2 = - 3 r ? F 2  + K~F0 (3.5d) 

To use (2.2) as a concise statement o f  (3.4,5) is clearly unsatisfactory, 
and it is necessary to modify the notat ion in order to be able to state the 
equations (3.4,5) in a concise manner  which displays their basic structure. 

The spin coefficients are now relabeled as follows: 

am = (p, - - t  z, % --Tr) 

b m = ( - A ,  c G - v ,  K) (3.6) 

c m : ( - -% ) . ' ,  - - f l , ~ )  
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and so the Bianchi equations (3.4,5) can be written in the concise form 

Vm z =-- VmtF2 - 3amW2 - bmTo = 0 (3.7) 

Vm n -- Vm~o - 3b~W2 - {am + 4Cm}tFo = 0 (3.8) 

It is now easy to determine the integrability conditions for tF 2 and q?'0, and 

3{aEm :~ - 7,Emp~ap}W2 

+ {brm:n~ - Vv~'~lbv + 2armb,~ + 4btmc,~}Wo 

= 0 (3.9) 

W ~  -- 3{bEm:~ ~ - ~,~mP~bp + 4ctmb,a + 2bEmcnl}W2 

+ {aEm;na -- ~,EmP~a~ + 4cE,~:,~ -- 47'tmP,~Cp}Wo 

= 0 (3.10) 

The Vm I, Vm ~z, W~,, W~,  Xmnp, Ym~q are here used merely as labels for 
the equations. The twelve equations (3.9), (3.10) are given explicitly in 
Appendix A. 

When equations (3.9, 10) are examined closely it is clear that the only 
integrability conditions for am, bin, Cm will arise from equations containing 
terms in aEm;,~,,l, b[m:,~p?, ctm:n~a, i.e., 

W[m;n,~ = 0 (3.11) 

W~m~ :,v~ = 0 (3.12) 

When the equations (3.11, 12) are expanded and the commutators (2.17), the 
Bianchi equations (3.7, 8) and the post-Bianchi equations (3.9, 10) substituted, 
it is found that the equations (3.11, 12) are identically satisfied. Hence it can 
be concluded that all the eight integrability conditions arising from the set of 
differential equations (3.9, 10) are identically satisfied. 

However, it is the whole differential system of equations which is under 
consideration and there is clearly the possibility of some inconsistency when 
the equations (3.3) are introduced alongside (3.9, 10). This inconsistency can 
be either algebraic or differential. 

So the next step is to consider all the differential equations for the spin 
coefficients--(3.3) together with (3.9, 10)--and check for algebraic consistency 
between the two sets. In the above analysis it was convenient to change from 
the usual notation for the spin coefficients, and although it is not possible to 
rewrite the set of equations (3.3) completely in the new notation, it will be 
best to continue working in this notation. Since interest is mainly in the 
differential terms in equation (3.3) it is enough at the moment to note how 

they are given in this notation as follows: 

W~n - 
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these terms appear  in the new notat ion for each 

Y ~ , 2  : (a~:2 - a~ . , )  Y24~ : 
Y2~2 :(bl;2 - ba;~) Y~aa~ : 
Y ~  : (a~ :~ - b~:~) Y2~a2 : 
Yl,~a : (aa;a - b2;2) Y2~x4 : 
Yxa~a : (ax:a - b~;~) gia2~ : 
Y 2 ~  : ( a 2  ;~ - b~ ;~) 

1 y  2( 1223 

k Y  1221 

equation:  

(a2  :~ - a4:~)  

(b~:~ - b~ :~) 
(a2:2 - ba;a) 
(a~:~ - b~;~) 
(a~:~  - b~ :2 )  

Y2~z2 : (a4;~ - ba:~) (3.13) 
- Y ~ )  : 2ca :~  
- Y~2~) : 2ct~:~ 
- Y~42~) : 2c(2:~) 
- Y , ~ )  : 2c(1:~) 

- Y ~ )  : 2c(~;2~ 

- Y ~ )  : 2c(~;~) 

I t  is clear f rom the form of  the above expressions that  the equations 
f rom the set (3.3) which will have to be tested for algebraic consistency 
against equations (3.9, 10) are the following: 

Yla~2 - Y2~az = 0 (3.14a) 

Y ~ 2  - Yla~ = 0 (3.14b) 

Y ~  - Y~a2~ = 0 (3.14c) 

Y~4a~ - Y2~12 = 0 (3.14d) 

Y~22~ - Ya~2~ = 0 (3.14e) 

Y~2~ - Y ~  = 0 (3.14f) 

When (3.14a, b) are written out explicitly and put into the new notat ion they 
become, respectively, 

aE1;21 - 7tl~'21ap - am~4j + 5'r3P41ap = 0 (3.15a) 

b t i  ;2~ - 7rlP2~bp + 2a t lb2~  + 4 b s 2 ~  + 7'r3~41b~, - 2aEab4j - 4bE3c41 = 0 

(3.15b) 

A compar ison of  these two equations with (3.9, 10) shows that there is no 
inconsistency; in fact, it means that two equations, W~2 and W~4, o f  the six 
equations (3.9) [considered together with (3.15a, b)] are not  independent, and 
so in practice one of  these equations need not  be included in the complete 
system. When (3.14c, d) and (3.14e, f) are written out explicitly in the new 
notat ion they become 

aEz :3j - 7Ez~'3~ap - br2;4~ + 7 J 4 ] b ~  - 2bE2a4~ - -  4cE2b41 = 0 (3.15c) 

a m : 4 j  - -  7E2~41ap - -  b~l;al  + 7tlP3~bp - 2b~ la3p  - 4c~lb3-j = 0 (3.15d) 

ct2;4 ~ - ;emP4jcv - a t l b a  I - 2bElca  I = 0 (3.15e) 

CEI:al - -  7 t z % jC p  - -  amb4]  - 2bmc4~ = 0 (3.15f) 
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A comparison of these equations with (3.9, 10) again reveals that there is no 
inconsistency. In fact, it means that there are two more pairs of equations in 
(3.9, t0)--WI3 with W~ and W z2~ with W~--which are not independent and 
so one equation from each pair can be excluded from the post-Bianchi 
equations. 

So to sum up as regards algebraic consistency: it has been shown that 
all the equations in the sets (3.3) and (3.9, 10) are consistent, and further, that 
three of the equations in (3.9, 10) are not independent when considered 
alongside (3.3). 

The final step is to check whether the introduction of (3.3) alongside 
(3.9, 10) will give rise to any new integrability conditions. First consider only 
equation (3.9) with (3.3) and it is clear from the form of the differential terms 
in (3.13) that the only equations which could possibly combine with (3.9) to 
give rise to integrability conditions are Y~342, Y2~2~, Y~z3, and Y~a3~. But 
further investigation quickly reveals that the algebraic consistency just 
discussed eliminates the possibility of any integrability conditions. Secondly, 
consider only equation (3.10) with (3.3), and a comparison of the forms of the 
differential terms in Cm in (3.13) with the terms eEr~:~ in (3.10) reveals that it 
is not possible to obtain new integrability conditions. This failure to be able 
to construct integrability conditions for the Cm alone clearly means that no 
new integrability conditions can exist when (3.9) and (3.10) together are 
considered alongside (3.3). 

So to sum up, as regards differential consistency the introduction of 
(3.3) alongside (3.9, 10) does not add any more integrability conditions to 
those eight conditions (already found to be identically satisfied) which are 
associated with the equations (3.9, 10) alone. 

Therefore it can be concluded that the equations (3.2), (3.3), (3.7, 8), and 
(3.9, 10)form a completely integrable system o f  equations. 

This is of course exactly the result obtained by Brans but it has been 
derived here by a method which, as well as being very concise, makes the 
basic structure more transparent. 

4. IDENTITIES FOR PETROV TYPE I SPACES 

In order to determine the redundancy within the complete system of 
equations (3.2), (3.3), (3.7, 8), and (3.9, 10), consider the system of equations 

XmP~ = 27t,~P,J -- 2Ztm.%~Z% (4.1) 

Ym~pq = Rm~pq -- 27m,c~;qj + 27~mLrTsl~lq~ -- 27mnsy~t~q~ (4.2) 

V m  I = ~mgXY 2 - -  3amW 2 -- bmWo (4.3) 

V~ ~ = V,~q% - 3bm~2 - {am + 4c,~}~Fo (4.4) 
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W ~  = 3~2{a~,~:~ - ~'rmPn]ap) 

+ V'Zo{b[m:ro - ?,tmP,~bp + 4btmC,~l + 2armb,~} (4.5) 

W~ / = 3tF2{b~,~:~ - 7,tmP~lbp + 4ctmbnj + 2bEma,~} 

+ W0{aEm:,~ -- ~ ' t ,~ap  + 4cfm:,~ - 4),t,~r~jcp} (4.6) 

remember ing  that  the c o m m u t a t o r  identities are given by 

~Xm ~Vp = 0 (4.7) 

The inhomogeneous  system of  equations (4.1)-(4.6) are now checked for  
consistency in the same way that  the corresponding homogeneous  system 
(3.2), (3.3), (3.7, 8) and (3.9, 10) has just  been checked. 

When  (4.1) and (4.2) are considered as differential equations in Zm a and 
~,,~p, respectively, their respective integrability conditions are found to be 

X s [p m;n] XrS[pXmrn] "}- xtprm{YlrlSn -- yn2Sr} + 2XrStpymrn] "-}- YrpSmn~ = 0 (4.8) 

gsm[npq] - -  Ysrnrnp ;q] + )'sm[n;IrlXprq] - -  27rrnp Ylsmlq]r 
r r y r - 7 ~t~YJrmjpq~ + ~' mE~ l~ l~  + e~m Yr~p~ = 0 (4.9) 

where V~tnpq~ is defined by 

- - ' (4.1 O) Vsm[npq] ~ Rsmrnp ;q] 2RsmtEnYt~ql -]- R[pql tm~/tsln] Rrpelts[ ~/ ran] 

and when written out explicitly [subject o f  course to the simplifications (3.1)] 
each independent  nontrivial  V~mr~pq~ corresponds to one of  the VJ ,  Vm ~ in the 
new notat ion.  

When  (4.3, 4) are considered as differential equations in Wo and W2, the 
integrabili ty condit ions are found  to be 

1 p I'~,/m:n] + WZmn + ~Xm nVpW2 + 3armVnZj + bE~V~] - 7E,~',~1V~ I = 0 (4.11) 

g,(I:n~ + WZm~ + -~-Xrn:~nVp~2 + {arm "+ 4Crm}V~ ~ + 3b[mV,~ I -- yrrnvr~]V~ z = 0 

(4.12) 

When  (4.2) and (4.5, 6) are examined for  algebraic consistency the 
following conditions need to be satisfied: 

W~z - I,V~ + 3Wz{Y~a~ - Yz~a~} + W o { Y z ~  - Y~aa~} = 0 (4.13a) 

+ W o { Y ~  - Ye~z~ + 2 Y ~ e ~  - 2Y~,~e~} = 0 (4.13b) 

- Wo{Y~,~ - Y~z~ + 2Y~m~ - 2Y~,~} = 0 (4.13c) 

When  equations (4.2) and (4.5, 6) are considered as differential equat ions 
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in am, bin, and cm it is again found that only one new set of integrability 
conditions arise [from (4.5, 6) alone] and they are found to be 

I 3 s 1 S 

- 2~'Em~ Wf l s  - 3 W[m,~ap~ - W~Zm.~b,l 

- V~Zm{b,~;pl - VnSplbs + 2a,~bpl + 4b,~czo~} 

3 s - ~W2 Ytm ~plas - �89  YEm~,p~bs = 0 (4.14) 
I I  3 s 1 s W[mn;p] + Zl'I22X[m nbp]:s + "~tFoX'[m n{ap]:s + 4Cpl;s} 

- 2yEm~WI~  -- 3 W ( m ~ b v a -  W~Zm,{av~ + 4cvl } 

- 3 V[m{b~:p~ - ~,~:b~ + 4enbpl + 2b,~ap~} 

- V~Im{a,~;~l - ~,~p~a~ + 4c~ :p~ - 47,,S~c~} 
3 s - ~W2 Ytm ,~lb~ - �89 YEm%pl{a~ + 4c~} = 0 (4.15) 

These five sets of equations (4.8), (4.9), (4.11, 12), (4.13), and (4.14, 15) 
hold for any values of Xm,~p, Y~n~,q, V J ,  VZm z, Wm ~, W ~  z and can therefore be 
considered as the identities linking the system of equations (3.2), (3.3), (3.7, 8), 
and (3.9, 10). 

There are many different ways in which this very considerable amount of 
redundancy could be exploited, but in this paper interest will concentrate on 
the possibility of using the post-Bianchi equations as replacements for other, 
perhaps less manageable equations, e.g., the set (3.2). 

5. SUFFICIENT SUBSYSTEMS OF THE COMPLETELY 
INTEGRABLE SYSTEM 

In Section 3 a completely integrable system of four sets of equations was 
determined, and in Section 4 it was realized that a considerable amount of 
redundancy exists within this system, which raises the possibility of choosing 
compact subsystems which are sufficient to ensure that the complete system 
is satisfied. [Indeed it is well known--and trivial to deduce from the identities 
- - that  equations (3.2) and (3.3) alone form such a sufficient subsystem.] 

When all four sets of equations are written out explicitly in N.P. formal- 
ism it is clear that the first set of equations (3.2) is of a different nature from 
the other three sets, (3.3), (3.7, 8), and (3.9, 10); and the anomalous character 
of this set is bound to raise special difficulties in any integration program for 
the system. So the question arises whether the set (3.2) is in fact redundant. 

An examination of identity (4.11, 12) shows that, providing (3.3), 
(3.7, 8), and (3.9, 10) hold, then 

Xmp~V,~2 = 0 (5.1a) 

XmP~V~o = 0 (5.1b) 
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If  it is assumed that only the most general Petrov type I spaces are considered, 
i.e., those where q~2 and ~Fo supply four functionally independent quantities, 
then (5.1a, b) implies 

XmP, = 0 (5.2) 

(In cases where less than four independent quantities are supplied, a more 
detailed analysis will be required, starting with a reexamination of the 
consistency of the system of equations.) 

So it can be concluded that the first set of equations need not be con- 
sidered explicitly, which gives the following result: The three sets o f  equations 
(3.3), (3.7, 8), and (3.9, 10) form a sufficient subsystem of  the completely 
integrable system. 

It is clear that the above result exploits only a small part of the available 
redundancy. (It is noted that the result can easily be deduced without using 
the identities, as such, at all.) The possibility arises of exploiting the redun- 
dancy further to establish a still more compact subsystem and in particular a 
subsystem which can be written concisely and exclusively in the new notation. 
An examination of the identities reveals that it is impossible to exclude the 
entire set (3.3) [i.e., to have a subsystem comprising only (3.7, 8) and (3.9, 10)] 
but it is clearly possible to include only some of equations (3.3) alongside 
(3.7, 8) and (3.9, 10) and yet ensure that the complete system is satisfied. 
There are many ways such a sufficient subset of (3.3) can be chosen but it 
would clearly be desirable to be able to choose a subset which can be presented 
concisely and naturally in the new notation. 

When the set of equations (3.3) are considered in detail, it is found that 
only three equations transfer simply and naturally into the new notation. 
These are 

Y1~42 + Y2431 = 0 (5.3a) 

Y2~42 + Y~a3~ = 0 (5.3b) 

Y12~2- Y~ ,12 -  Y I ~  + Y ~  = 0 (5.3c) 

which become 

am:m -- ymP=ap + amain -- b'~bm = -2W 2 (5.4a) 

bm:m - ympmbp q- 4br~cm = 2Wo (5.4b) 

cm :m - -  '~mPmep -~- 2cream -- �89 + �89 = 2W2 (5.4c) 

When these three equations (5.4a, b, c), together with the sets of equations 
(3.7, 8) and (3.9, 10) are substituted into the identities, it can be shown that 

Xm,~v = 0 for all m, n ,p  (5.5a) 

Ymnpq = 0 for all m, n,p,  q (5.5b) 

(The details of this calculation are given in Appendix B.) 
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So the following result has been obtained: The three se ts  o f  equations 

(5.4), (3.7, 8), and (3.9, 10) f o r m  a suff icient subsys tem o f  the comple te ly  

integrabIe sys tem.  
Therefore a remarkably concise and simple system of equations has been 

determined in the new notation, and the simple structure is even more ap- 
parent when the equations are written in ordinary tensor notation. In this 
presentation the subsystem is given by 

a~..,~ + a~a~ - b~b,~ = - 2 W  2 (5.6a) 

b'~:,~ + 4b~c,~ = 2~o (5.6b) 

c ~ + 2c'~a,~ - �89 + �89 = 2~'2 (5.6c) ;a 

V~Wz - 3a~W2 - b~Wo = 0 (5.7a) 

V~aFo - 3b~W2 - {as + 4c~}Wo = 0 (5.7b) 

3W2{aE~:b~} + ~Fo{bt~:b~ + 2ac,b~l + 4bE~cba} = 0 (5.8a) 

3W2{bt,:b ~ + 2b~abj + 4cE,bb~} + W0{aE~:ba + 4ct~:b~} = 0 (5.8b) 

where 

a~ = - I ~ Z I ~  + pZ2~ + IrZ3~ - rZ4~ (5.9a) 

b~ = ~ZI~ - AZ2~ - K Z ~  + v Z ~  (5.9b) 

Ca = ~'Zz~ - EZ2~ -- ~Z3~ + ~Z4~ (5.9c) 

This new presentation of the vacuum Einstein-Petrov type I equations 
is not only different from existing presentations, but in some ways the 
structure, especially the differential structure, is simpler. The natural and 
simple nature of these results suggests that they could have been obtained 
more directly, and that there is some underlying structure which still remains 
to be fully understood and exploited. 

From a practical point of view it is important to note that the covariant 
derivative can always be replaced by the much more manageable ordinary 
partial derivative [although of course, the determinant g of the metric tensor 
gab still occurs in (5.6)]. Further there is an obvious subclass of spaces (when 
as, b~, and c~ are chosen as gradient vectors) where some of the equations are 
identically satisfied and the system immediately reduces to only three equa- 
tions. Some of these spaces are considered in the following section. 

6. SIMPLIFICATION OF EQUATIONS FOR A SPECIAL CASE 

The system of equations (5.6a, b, c), (5.7a, b), (5.8a, b) are now con- 
sidered in their own right--the origin of the vectors as, b,, and c~ is no longer 
important. A solution to this system of equations (by which is meant having 
solved for as, b,, c~, aL b ", c ~, Wo, ~F2) is sufficient to give a unique metric go~ 
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which will be a metric for  vacuum Petrov type I spaces. An example will 
illustrate the technique. 

The special case, 

a~ = 2c~ (6.1) 

is considered. When this specialization is substituted into (5.7) they become 

V~tF2 - 3a~q~2 - b,~Fo = 0 

V,q% - 3b~qe2 - 3a~Wo = 0 

which are easily rearranged into 

6a~ = V~ In {3~F2 2 - ~o  2} 

2(3)a/2b,~ = V,~ In {(go + 31/2tF2)/(~o - -  31/2~F2)} 

(6.2a) 

(6.2b) 

or, 

Since a~ and b~ are clearly gradient vectors, this property,  together with 
condi t ion (6.1), ensures that the post-Bianchi equations (5.8a, b) are identically 
satisfied. 

So only equations (5.6) remain to be satisfied, and under  the substitution 
(6.1) they simplify to 

b~b~ = 3Re2 (6.5a) 

a'~:a + a'~aa = ~F2 (6.5b) 

b~;~ + 2b~a~ = 2Reo (6.5c) 

(Vb).(Vb) = 3~F2 (6.6a) 

[Z]a + (Va).(Va) = Re2 (6.6b) 

[Zb + 2(Vb).(Va) = 2W0 (6.6c) 

where the complex scalars a, b are defined by 

a~ = a~ (6.7a) 

b~ = b,~ (6.7b) 

Since it has been assumed that ~F0 and Re2 are functionally independent,  they 
could be used to provide the four  coordinates, but  in this case it is more 
convenient  to let the functionally independent  scalars a and b provide the 
coordinates,  

a = ~ = x l  + ix2 (6.8a) 

b = ~ = x3 + ix4 (6.8b) 

(6.3) 

(6.4) 
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In this coordinate system the equations (6.6) become 

gnn = 3uF2 

g-1/2{gl /2g~}, ,~  + 2gr = 2W ~ 

where 

3112~F2 = ie ar cosh 31/2~ 

q~o = ie 3~ sinh 31/2~ 

(6.9a) 

(6.9b) 

(6.9c) 

(6.10a) 

(6.10b) 

So for this special case, the problem reduces to solving the coupled set of 
differential equations (6.9) to obtain the metric tensor directly. As would be 
anticipated, this problem is far from trivial, but it certainly seems possible 
to establish some general existence criteria, and to extract special solutions 
by straightforward techniques. The results of such investigations will be given 
elsewhere. 

7. SUMMARY AND DISCUSSION 

The original intention of this paper was to establish the completely 
integrable system of equations discovered by Brans (1977) by a more concise 
and transparent method. In order to do this it was necessary to look in detail 
at the structure of the system of equations and not only did this make it easy 
to obtain Brans' results, but it was possible to round off his work by presenting 
explicitly the redundancy inherent in this complete system. An immediate 
consequence of this redundancy is that, for arbitrary Petrov type I spaces, 
the first set of structure equations can be omitted from the complete system. 
Since within the N.P. formalism, this particular set of equations is of a 
different nature (vector rather than scalar) than the other three sets, it is 
hoped that being able to exclude it will simplify integration procedures 
within the N.P. formalism. 

The conciseness of presentation for both the complete system and the 
associated identities, was achieved by introducing a new formalism which 
emphasized the comparatively simple structure of the Bianchi equations for 
vacuum Petrov type I spaces. This new presentation also revealed that the 
post-Bianchi equations were of a much simpler structure than might be 
suspected from their presentation in the N.P. formalism (Brans, 1977). 
Further, it was almost trivial to deduce that no higher integrability conditions 
exist; this cdnfirms Brans' suspicion that this result should be obtainable 
without the detailed computations that he had to carry out. 

However, what is felt to be of more significance is that this new formal- 
ism, which was introduced originally merely as an aid to computations and 
presentation, is of importance in its own right. The sufficient subsystem of 
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the complete system is not only very compact but its very natural and simple 
structure suggests that it could have been derived by more direct means 
which are not immediately obvious. (It is remarkable that the only three 
equations of  the second set of  structure equations which can be written 
simply in the new notation are precisely the minimum equations needed to 
combine with the Bianchi and post-Bianchi equations to ensure a sufficient 
subsystem. It  is also interesting that these three equations, probably the 
crucial ones of  the subsystem, have such a standard form.) So although some 
more insight has been gained into the structure of  these spaces, it is still felt, 
echoing Brans (1977), that there is still much more to be understood. 

Finally, of  immediate interest is the real possibility of  obtaining new 
exact solutions and also of extracting physically significant information from 
the "wave equations" in Section 7. 

A P P E N D I X  A 

The twelve equations (3.9) and (3.10) are given explicitly as 

W~2 -~ 3~2{Ap + D/x - (Y + ~7)P + (e + g)F + r e  - 7rg-} 
+ ~'o{-AA - Oc~ + ( ; 7 -  3y)A + (3e - g)c~ + ,~r 

+ K 'E - -  v r  w" + 2~p -- 2/*//} 

= 0  
W~a --- 3~F2{Sp - D r  + (.g - E, - f l )p + (F  + e - g)~- + ~K - o-~r} 

+ go{ -SA + D v  + (2r + 5 f i + ( 7 -  ~)A + ( g -  5 e -  ~ -  2p)v} 
= 0  

+ ~ F o { - g ~  - Dk: -- (3~r + 3e~ -- ~),~ + (3p + 3~ + ~-)K -- v 6 -  . ~ }  
= 0  

w ~23 -- 3 % { - a ~  - zb- - (/3 + ~)~  + 6'  - 5>- + ,~X + p~} 
+ ~Fo{Sc~ + Av - (3r + 3/3 - ff)c~ + (3/* + 3y + 5)v - KX -- A~} 

= 0  
W'24 = 3 T 2 { - 8 / J .  + A~- + ( r  . . . .  /~ e0/x + (/7 + .), :7)7r + p~, Ar }  

= 0  

w~'~ - 3 % { &  + a= - (~ - / ~ ) r  - pg  + ~ + (/3 - ~)~} 

+ T o { - ~  + a~ - (~  + 3~)~ + (35 + ~)~ + ~(p - f )  
+ a (~  - t,) + 2,K - 2 ,~}  

= 0  
WI{ - 3T2{-AA - D ~  + A(, 7 + 5V) - (5e + g)a + ~ e  - v~r 

+ Kr - u ~ -  2p~ + 2/*//} 

+ 'F0{zxp + D ~  - o(v + ~2) + ~-~ + ~(~ + g) - ~ 
-- 4(Ae + D r + 2 e y -  5 e -  y g -  ~r +/3rr + / 3 r  ~ff)} 

= 0  
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W ~  - 3W2{-8),  + Dv - (2r + 3/3 - ~ + rr)), + (~- + 3e - ~ + 2p)v} 
+ T 0 { 8  P -  Dr + ( ~ -  g -  5)p + ( # +  E -  e)r + IzK - ~rt 

- 4(8e - D/~ - ~ + /3/~ + Ky + fie - / 3 ~ - -  ~e)} 
= 0  

W~= - 3tF2{-8)` - DK + a(/3 + 5c~) + K(g -- 5,) -- pK + Art -- vJ  -- crY} 
+ Wo{gp + DTr - ( ,  + ~)p + (e - ~-)~r + r~  + /*~ 

- 4 ( g E +  D ~ -  ~ g - f i E -  ~ p + f i ~ + y ~ + ~ T r  
= 0  

+ ' F o { - 8 t ~  - •  - (5 + ~)~ + (;~ - 5 ) ,  + ~X + p~ 
- 4 ( - 8 y  - A/3 - /~r - ay - /%~ + ~,~ + e~ + 7'), + 5y - / 3 5 ) }  

= 0  

W~{ = 3tF={ge - AK -- (2rr + 3a -- /3 + r)~ + ('7 + 3y -- g + 2t*)~} 

+ W ' o { - g ~  + •  + (~ - / ~  - ~)p + (g  + v - ' 7 >  + p. - ),~ 
- 4 ( - S y + A ~ - ) , f i + / 7 ~ + v , +  c y - a S - f l y ) }  

= 0  

War{ ---- 3tF~{- 3v - 3x + v ( / 3 -  5c~) - ~(5/3 - if) - ~/z - it> - (~p 
+ A~- 2r~ + 2~'v} 

+ "v0{g~ + a~ - ~(~ - #)  - p# + ~(5 - ~) + t~# 

= 0  

As noted in Sections 3 and 4, th ree  of  the above equations are not  
independent when considered together with the set (3.3'). When the above 12 
equations are compared  with the nine equations given by Brans (1977), it is 
seen that  the three dependent equations omitted by Brans, are WI~, Wd~, W ~ .  
Further  it is easy to see that  the four equations W~,  W~a, W~,  W~a, agree 
identically with four  equations f rom Brans'  set, but  that  the remaining five 
equations have to be combined with appropriate equations f rom the set (3.3') 
to agree identically with the remaining five in Brans'  set. (It should be noted 
that  there are some minor  disagreements between the two sets, due it is 
suspected to misprints in Brans'  paper.) 

A P P E N D I X  B 

In order to obtain the required result it will be necessary first to establish 
the following lemma. 

Lemma.  Consider a tensor T~ca with the following properties:  

(a) Ta~ca = TabEcal = TE~<ca = Tca.o 

(b) T~rbcda = 0 

(c) T,~ba = ~ ,~b  + 28[a[oT~b i _ �89 T 
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where T% = Tabc~, T = T% 

(d) T~bE~d:~l = 0 

In Einstein-Petrov type I vacuum spaces the conditions 

(i) :?ob~ = o 
(ii) T = 0 

are sufficient to ensure 

T~bc~ = 0 

Proof When conditions (i) and (ii) are substituted, via the decomposition 
formula into property (d), it is found that 

T~b ;~1 = 0 (B. 1) 

The integrability conditions for these equations are 

T~Eb:ca I = 0 (B.2) 

o r  

RaeE~aTb~e = 0 (B.3) 

When each individual equation of (B.3) is written out explicitly for vacuum 
Petrov type I spaces, it is clear that 

T~0 = 0 (B.4) 

and hence the lemma is proven. �9 
Turning now to the proof  of the main result. When equations (5.4), 

(3.7, 8), and (3.9, 10) are substituted into the identities (4.8)-(4.15) the 
following results are obtained, with the help of the decomposition formula: 

Xm,, = 0 (B.5) 

r = 0 (B.6) 

Ym.pq = 0 (B.7) 

By applying the tetrad version of the above lemma it follows immediately that 

Ymnvq = 0 (B .8 )  

which is the required result. 

NOTE ADDED IN PROOF 

It has been realized that the system of equations (5.6), (5.7), (5.8), and (5.9) 
do not follow as easily from the system (5.4), (3.7, 8), and (3.9, 10) as implied. 
The detailed justification for this particular result will be given in a separate 
paper. 
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